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We are Interested in resource allocation mechanisms that perform satisfactorily in environments 
which are problematic for the Walrasian equilibrium theory and the tatonnement. The 
B(idding)-process of Hurwicz-Radner-Reiter IS informationally decentralized and has appealing 
normative properties The speed of convergence of the B-process is characterized in an economy 
with mdivislble commodities. A modification of this process is shown to converge m an economy 
with both divisible and indivislble goods. Some simulation results on the B-process and its 
modifications throwing hght on its performance in non-Walrasian environments are also 
reported. 

1. Introduction 

The problem of developing a logical framework which can be used to 
analyze, evaluate and perhaps formally compare alternative organizations (or 
‘mechanisms’) for resource allocation has continued to engage the attention 
of economic theorists [see, e.g., Marschak (1972), Reiter (1986) and Hurwicz 
(1986)]. Some of the criteria for evaluating the performance of a mechanism 
have been suggested by the properties of Walrasian models of equilibrium 
and tatonnement in an economy with many agents. These include, for 
example, non-wastefulness, unbiasedness, preservation of privacy (informa- 
tional decentralization), efficiency of communication (size and complexity of 
messages involved in the functioning of the process) and incentive 
compatibility. 

It is well known that the presence of indivisible commodities leads to 
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obvious difficulties in developing the theory of existence and optimality of a 
Walrasian equilibrium [see, e.g., Koopmans (1957)]’ Thus, when the 
classical assumptions of convexity or absence of externalities are unrealistic, 
one is interested in designing ‘new allocation mechanisms that would meet 
our standards of performance (non-wastefulness or unbiasedness) in non- 
classical environments and still qualify as informationally decentralized’.’ 
Yet another motivation for experimenting with alternative mechanisms 
comes from dynamics: examples were given by Scarf (1960) and Gale (1963) 
showing that (in the presence of strong income effects) a tatonnement may 
not converge at all, or that a particular (‘fair’) equilibrium cannot be attained 
(is globally unstable). In this paper we present some analytical and simula- 
tion results on stochastic B(idding)-processes. Such processes were introduced 
by Hurwicz-Radner-Reiter (1975) (to be referred to as H-R-R henceforth). A 
related process (the Random Ascent or RA process) was studied subsequently 
by Mitsui (1981, 1984). Our interest in the B-process is primarily due to 
some remarkable properties that hold even when the economy has indivisible 
goods: it is an informationally decentralized process which is non-wasteful, 
unbiased, and converges to a Pareto-optimal state with probability one (in 
finite time when there are only indivisible goods). Thus, when one turns to 
environments that pose difficulties for the Walrasian model (for brevity, non- 
Walrasian environments) an examination of the B-process provides a con- 
venient point of departure. 

The analytical results on B-processes presented in sections 2-3 supplement 
the literature in two directions. In section 2 we focus on the question of 
speed of convergence in an economy consisting exclusively of indivisible 
goods. Even when one establishes that an adjustment process is stable in 
some sense, the question of the speed of convergence seems to us to be 
particularly important. Economic agents have finite life spans, of which only 
a fraction can be allocated to economic activity. Thus, if agents are not 
allowed to trade until an equilibrium is reached (in a tatonnement) or a 
Pareto-improving transaction is found (as in the B-process), the economic 
significance (from both the descriptive and predictive points of view) of a 
model of equilibrium and adjustment is somewhat limited if attainment of 
equilibrium turns out to be painfully slow. The importance of studying the 

‘One approach is to study approximate Walrasian equilibria in environments with non- 
convex preferences and/or with non-convex consumption sets [see Anderson, Khan and Rashid 
(1982) and Khan and Rashid (1982)] Thus, for instance, the former paper demonstrates the 
existence of a price vector which bounds the per capita excess demand by C/g’N, where N is the 
number of agents, and C is independent of preferences. While this result helps in gauging the 
extent of the difficulty faced by the Walraslan mechanism in non-convex environments, it still 
means that aggregate excess demand can grow by g’N; furthermore, there still remains the 
problem of achieving this price through an adjustment process. 

‘See Hurwicz-Radner-Retter (1975, p. 188). 
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rate of convergence was recognized by H-R-R (1975, pp. 190-191) although 
it has received relatively little attention in the stability literature [surveyed, 
e.g., by Hahn (1982)]. To keep the exposition self-contained, we outline a 
simplified version of the H-R-R process in an economy consisting exclusively 
of K indivisible commodities (a detailed exposition of a more general 
framework is in H-R-R). The main results of section 2 (see Proposition 2.1) 
indicate that the B-process converges at an exponential rate to a Pareto 
optimal allocation. More precisely, there exist positive numbers a and C such 
that for any initial distribution U, over the states, one has 

Probability [U, is not Pareto optimal] s Ce-“’ 

where U, is the vector of utility levels of the current allocation at the end of t 
periods. The numbers a and C are derived from the description of the 
economy. 

A second direction in which we have made some analytical progress is a 
study of the case in which the economy has both divisible and indivisible 
goods (this ‘mixed’ case was not covered in H-R-R or Mitsui). Here we 
propose a modification of the B-process (the ‘Surplus Reallocation Process’) 
that is still informationally decentralized and converges to a Pareto-optimal 
allocation with probability one. The primary difference between our process 
and, say, the divisible economy of H-R-R, is this: in H-R-R the message 
communicated by each agent consists of the intersection of a cube of fixed 
radius with the ‘at least as good as’ set relative to the current allocation. This 
‘set-valued’ message can, therefore, be quite complex, requiring a detailed 
description of the local preference pattern. In our case, the agent (as in the 
indivisible economy) selects a single commodity bundle and communicates 
the net trade (i.e. a vector with M + K coordinates if there are A4 divisible 
goods and K indivisible goods) corresponding to this bid to the referee of the 
process. The referee then sums up the agents’ net trade vectors. If (and only 
if) the total corresponding to each of the M divisible commodities is zero or 
negative, and that corresponding to each of the K indivisible goods is zero, 
are the agents’ bids accepted by the referee. Any ‘surplus’ for some divisible 
commodity (i.e. a strictly negative total net trade for that commodity) is 
reallocated by him to all the agents by a simple averaging rule. 

The main advantage of transmission of ‘point-valued’ messages, as is the 
case in the Surplus Reallocation Process described above, is that it can 
significantly lower the aggregate costs of communication (if they increase 
with complexity of messages). Our modification, outlined in section 3, was in 
fact suggested by our computer-experiments on the sensitivity of the speed of 
convergence (see the comments in section 4). The importance of studying the 
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mixed economy and of simplifying the structures of bids in the divisible case 
(while retaining the optimality and convergence properties for non-convex 
environments) was stressed by H-R-R (1975, see p. 19, ‘A future extension of 
our results to “mixed” cases would be helpful’ and also pp. 195-196, ‘the 
construction of the bid in the divisible cases can be quite complex.. . . It is an 
open question to what extent one could hope to simplify the structure of bids 
in the divisible case’). We show (see Theorem 3.1) that the Surplus 
Reallocation Process described above converges to a Pareto optimal position 
with probability one in economies with both divisible and indivisible goods. 
We have not, however, made any formal analytical comparison between our 
process and the B-process of H-R-R. 

It is also worthwhile to indicate the differences between Mitsui’s work and 
ours. Mitsui’s process is also a stochastic adjustment process which con- 
verges in the limit to a Pareto optimal position. In Mitsui’s framework, there 
is a central authority which generates proposals, which are then submitted to 
the agents, each of whom decides whether to accept or reject the proposal. In 
contrast, our process, like the B-process of H-R-R, would seem closer to the 
spirit of decentralization, since it is the agents themselves who initiate the 
proposals, while engaged in randomized search for utility improving trades. 
In addition, Mitsui does not cover the class of environments in which both 
divisible and indivisible goods are present. On the other hand, because the 
center is initiating the proposals, the class of economies for which Mitsui’s 
result holds is much larger, and also includes economies with consumption 
externalities, unlike the case here. 

In section 4 we summarize the lessons from computer experiments. The 
simulations were run on the Cornell Supercomputer (IBM 3090/600E). We 
report (in section 4.1) on simulations of the B-process and its modification in 
Scarf’s economy. Performance is measured as follows: we fix the total 
number of bidding periods at 1,000, and compute the allocative efftciency 
achieved by each process within this time. The simulations reveal that both 
the B-process and its modification perform fairly well. On a scale where the 
initial allocation is at a distance of 1.0 from the Pareto Frontier, the B- 
process and the SR process reached within 0.01 and 0.11 of the Frontier, 
respectively (averaged over 100 sample paths). 

The B-process also does well in Gale’s example [see Bala (1989) for 
details]. In this economy, there are three Walrasian equilibria, with two 
assigning zero income to each agent. The third ‘symmetric’ equilibrium is 
appealing as a ‘fair’ one, but is globally unstable. As Chipman (1965) 
remarked, ‘both “unfair” solutions are possible competitive equilibria, but the 
“fair” one is an unstable equilibrium, and therefore, could not be achieved in 
the framework of the competitive system’. A simulation of (H-R-R) B- 
process converged on an average of 105 periods, with the mean utility for the 
agents being close to the utility corresponding to the fair equilibrium. Thus, 
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our simulations indicate that the B-process performs quite satisfactorily in 
the cases that are so problematic for the tatonnement.3 

Section 4.2 reports some simulations for the indivisible case. The simula- 
tions reveal that the rate of convergence is quite sensitive to the search 
process employed by the agents. For instance, if on average agents make 
high bids relative to the total endowments, then the process converges very 
slowly. Two examples are particularly revealing and ought to be stressed. 
One shows that in an economy consisting exclusively of indivisible goods, 
while a B-process converges in finite time with probability one, there may be 
a long period of ‘inaction’ or ‘no transactions’ (i.e., Pareto improving trades 
may not take place for 99,999 periods!). The other example (in section 4.3) 
concerns an economy where the dynamic performance of a B-process is 
adversely affected by incentive incompatibility. Specifically, an agent has an 
incentive to select a bidding distribution that will enable it to converge to an 
advantageous Pareto optimal allocation. However, if all the agents attempt 
this type of manipulation, the expected time taken to converge will tend to 
infinity. 

2. The B-process of H-R-R in an exchange economy with indivisible goods: 
An outline 

We shall discuss the B-process in the context of an exchange economy. 

Assume there are N agents [indexed by i= 1,2,. . . , N] and K indivisible 
commodities in the economy. We denote the set of non-negative integers by 
Z,. The consumption set of agent i is C’c Z”,. Each agent also has an 
endowment vector denoted wi E C’, and a utility function u’: C’-+R. In order 
to highlight the anonymity of the process, the description4 will proceed in 
terms of the net trading sets 

yi= ci_ {wl>. 

The utility function ii’: Y’+R is defined on Y’ as U’(y’) = u’(y’+ oi) for y’ E Y’. 
Hence, we will use the notation U’ for ti’ even though the domain is different. 
Each agent also has a bidding distribution Pi defined on Y’. We assume that 

3As regards alternative adjustment processes for the competitive mechanism. Van der Laan 
and Talman (1987) have constructed a globally stable algortthm for obtaining competitive 
equilibria, when excess demand functrons are continuously differentiable. Their process con- 
verges to the unfair equilibrium in the Gale example. On the other hand, then process does 
converge to the competitive equilibrium in the Scarf economy. Nevertheless we still choose the 
Scarf example for comparative purposes, smce the tatonnement dynamics remain more 
compelling from an economic point of view. For the Scarf economy, see also Hirota (1985) for a 
genericity result. 

%ome examples will be gtven m terms of consumption sets. 
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the support of Pi is Y’, i.e. P’(y’) >O for every y’ E yi. Pi defines a family of 
conditional probability distributions {P’(.Iy’), y’ E Yi} on Y’ given by 

P’(x’( y’) = i ;i(x’),pi(Gi(yi)) ~;;~;s;ui(y’J, 

where G’(y’) is the upper contour set, i.e. G’(y’)- {Z’E Y’Iu’(z’)~~~(y’)}. Thus, 
it can be seen that if the agent is currently at y’, the conditional bidding 
distribution gives support only to points in the trading set that yield at least 
as much utility as it has presently. Define the feasible set as: 

YF= (yl,..., 
i 

YN)E fi Y' i: y'=o, . 
i=l I I t=l 

(2.0) 

Clearly Y, is finite. Let U(y) represent the utility image of a point y in Y,, i.e. 

U(y) = (u’o”), . . .,aN(yN)} for y=(y’,..., yN) in Y,. 

Also let 

Y,, = (y E Y,) y is Pareto optimal} 5 

The utility image of the Pareto Frontier YPF is denoted by U,, = U( YPF). 
The bidding process works in the following manner: agents begin at period 

zero at the point 0, of their (net) trading sets. Each agent i chooses a point 
b’ in its upper contour set G’(0,) according to its conditional bidding 
distribution P’(.IO,). This constitutes its bid for that period. If b= 

{(b’, . . . , bN)} lies in Y,, i.e. is feasible, then a reallocation of endowments takes 
place, so that the agents’ new endowments are given by (b’ + WI,. . . , bN + coN). 
If the collection of bids is not feasible, then agents remain at their current 
endowments. In the next period, exactly the same procedure is repeated and 
the process continues. Thus, the mechanism defines a finite Markov chain 
{B,} on YF and H-R-R show (Theorem 4.2) that it converges to a point in 

5y E YpF if and only of y E Y, and 3 YG Y, such that u’(j’) > u’(y’) for all i = 1,. _, N with strict 
inequality for at least one 1. 
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UpF infinite time with probability 1. Once having reached a point in U,,, the 

process stays there forever. 

2.1. On the rate of convergence of the B-process with indivisible goods 

Formally, of course, {B,) is a sequence of random elements from some 
probability space (r, F, P) taking values in Y,. However, it is completely 
characterized by its transition matrix, and the initial distribution assigning 
probability one to the state B,=(O,, . . . , 0,). We can now write down the 
transition probability matrix X corresponding to the Markov chain {B,) on 
Y,. Let y=(y’,..., y”) be the current state and z =(z’, . . . , z”) be another state 
in Y,. The transition probabilities are 

Wzly)=O if KW-U(y)l4@, (2.1) 

X(Z)Y)= fi P’(z’ly’) if ~#y and [U(z)-U(y)]oRN,, 
i=l 

(2.2) 

x(YIY)=l- c X(ZlY). 
(zsYF.r#yt 

(2.3) 

Note that by the assumption on support, the transition probabilities are 
strictly positive if and only if z is not Pareto inferior to y. In particular, for 
every y, there is a positive probability of staying at y, which is 1 only if y is 
Pareto optimal. 

In general, the mapping U: YF+RN need not be one-to-one. However, the 
stochastic process {U(B,)} ( w ic we shall henceforth refer to as {U,}) is a h’ h 
Markov chain, as indicated by the following lemma. 

Lemma 2.1. The B-process induces a Markov chain on U( Y,) with transition 

matrix V given by: 

y’e~(u’)X(~‘(~) O”(U’-~ERN+ 
otherwise ’ 

where A(u’)= U-‘(u’)~ {y’l U(y’)=u’} and y’ is any element of U-‘(u). 

Proof. See appendix. 

(2.4) 

The above implies V(ulu) is 1 if and only if u is Pareto optimal. 
Furthermore, by the assumption on the support, if u is not Pareto optimal, 
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there is a strictly positive probability of moving to some Pareto optimal 
state. It follows from the standard theory of finite Markov chains [see 
Kemeny and Snell (1960)] that the set of Pareto states are ergodic 
(absorbing) states and all others are transient. Results concerning absorbing 
Markov chains can be applied here, to demonstrate exponential convergence. 
Using the special structure of the process, we indicate how to get a ‘fairly 
good upper bound for the rate parameter in terms of the transition 
probabilities. . 

Lemma 2.2 in the appendix allows us to write down the transition matrix 
(starting from a non-optimal state u) as an upper triangular matrix V,. Let h 
be the total number of states, g the number of Pareto optimal states and 
n = h -g the number of non-Pareto optimal states. We have 

%=(: :;I [;];X” ff [Ij. (2.5) 

We note that in light of Lemma 2.2, the first row refers to the state u. 
Also, W is the matrix of absorption probabilities starting from a non-optimal 
state. It follows from the assumptions on the B-process that each row of W 
has at least one strictly positive element. Finally, we have: 

Proposition 2.1. Let VU be as given in (2.5). Define i,=maxijrtij< 1. For 
every E>O such that A,,+&< 1, there exists C,>O such that for all t 2 1: 

Pr (U, is not Pareto optimal] U0 = u) 5 C,(A, + E)‘. 

Proof. See appendix. 

The above proposition shows that convergence from any original position 
occurs at least geometricaly. For comparability, we shall refer to this in 
terms of the exponential function henceforth. 

Corollary 2.1. There exist a> 0 and C > 0 such that for any initial probability 
distribution over the states U,, Pr ( U, is not Pareto optimal) 5 C e-‘“. 

Proof. For each u in the non-Pareto optimal set, define J.” corresponding to 
the transition matrix VU, where A, is defined as in Proposition 2.1 above. Let 
,~=max,I,< 1. Fix any E>O satisfying P+E< 1 and choose C sufficiently 
large so that the condition in Proposition 2.1 is satisfied for every u which is 
non-optimal. Finally, let a = -log (p + E). 0 
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Example 2.1. We calculate a lower bound for u (Corollary 2.1 implies that a 
higher value of a is associated with a faster rate of convergence to the Pareto 
frontier) in an economy with N agents and two indivisible goods. The total 
endowment of the economy is (r, r), r being a positive integer. All agents 
i=(l,..., N) have the same utility function u’(xi,xi,)=min(xl;, xi). The 
‘Edgeworth box’ is the set 

(x’):(xf, x\)EZ: and cx’=(r; r) . 

i 

An allocation (xi) is an element of E. Each agent i has a bidding distribution 
Pi(.) on Z:; assume that P’(x) >O for all x E Z:. Now denote by m’= 

mkE P’(x) >O and write m=min,m’. Then m is the smallest probability with 
which any point in E is bid by any agent. It is not difficult to see that for 
any non-optimal allocation in E there are at least N Pareto optimal 
allocations in every agent’s upper contour set. Thus the probability of 
moving to a Pareto optimal allocation is at least NmN. Using our termin- 
ology above, this implies that p 5 1 - NmN, and CI =log p 2 NmN (approxi- 
mately). Two conjectures can be made from this calculation: first, as the 
number of agents increases, the bound decreases, and as the agents bid more 
extravagantly (lower m), the rate of convergence decreases as well. The 
simulation results discussed in section 4 lend additional support to these 

conjectures. 

3. The surplus reallocation process in an economy with both divisible and 
indivisible goods6 

The bidding process was developed also by H-R-R for an economy 
consisting exclusively of divisible goods. Suppose that there are M divisible 
goods. In H-R-R, the sets Y’ are assumed to have non-empty interior in R”, 
and the initial bidding distributions P=(P’, . . , PN) are assumed to be 
absolutely continuous with respect to the Lebesgue measure. If agent i is 
currently at position xi, then P’(G’(x’)) is the probability mass associated with 
the upper contour set. A positive number 6 >O is fixed from the outset. The 
agent chooses a bidding cube of radius 6 in the following manner: the 
conditional bidding distribution (CBD) is 

P’(y’)x’) = { opi(y’),pi(Gi(xi)) if ;: E z:;::;. (3.0) 

6This modified process is due to V. Bala. 



10 V. Bala et al., Resource allocation in non- Walraslan environments 

Agent i chooses the center of its bidding cube according to its CBD, which 
will be an M-dimensional point in its trading set, say r‘=(ri,. . ., rh). The 
bidding cube is the M-dimensional set @(ri; xi) given by ((ri -6, ri +a) x 
. . . x (rL--6, rL+S} n G’(x’) and is the set of all allocations the agent is 
willing to accept. The set of acceptable allocations is defined as fl*(r; x) where 
r=(rl,..., rN), x=(x’,..., x”) and equals {cy=i B’(r’; xi)} n Y,. B*(r; x) is a 
[possibly empty] subset of the set of feasible allocations which do not make 
any agent worse off than X. If it is non-empty, the referee chooses a point at 
random from this set which constitutes the new allocation from which bids 
will be made. If it is empty, then agents stay at their current allocation and 
make another bid using the same CBDs as before. 

The major problem with this process is that the messages sent by each 
agent can be quite difficult to describe and communicate. When the center of 
the agent’s bidding cube is close to the current allocation, the agent will have 
to transmit details of the local preference structure to the referee, which can 
be quite cumbersome. In addition, the set b*(r, x) is also quite difficult to 
compute for the referee even in small economies (this issue came to light in 
our simulation experiments). The simulations (see the remarks in section 4) 
on the speed of convergence led to a modified B-process - which we have 
called the Surplus Reallocation (SR) Process - with agents making only a 
single (point) bid in each period, and where any ‘surplus’ after bidding is 
reallocated by an averaging process. This modification also works for the 
‘mixed’ case where some commodities are divisible, others are not. Our main 
result is that the SR process converges to a weakly Pareto optimal outcome 
with probability one. In what follows, an allocation is weakly Pareto optimal if 
there is no other feasible allocation yielding a strictly higher utility level for 
all agents. Mitsui (1981, 1984) also uses the same criterion (and assumption 
ED.6 of H-R-R also implies weak Pareto optimality in our context). 

3.1. A formal model of a mixed econom) 

As before, Z, is the set of all non-negative integers. For two vectors 
x=(x,), y=(y,) we write xly if x,zy, for all x;x>y if xzy and x#y. 
We consider an exchange economy with N agents (indexed by 
igl ={l, 2,. . ., N)), M divisible goods and K indivisible goods. For a 
commodity vector x (in Ry x Z”,) we write x=(X, z2) where X (resp. a) is the 
M-vector of divisible (resp. K-vector of indivisible) goods. The consumption 
set of agent i, denoted by C’, is simply C’= Ry x Z”,. (To be sure, Z + has the 
discrete topology and any product space is assigned the product topology). 
The initial endowment of agent i is denoted by oi =(Gi, 6’) and the set Y’ of 
net trades is (as before) Y’-C’- {wi}. In what follows, it is assumed that the 
aggregate endowment of every good is strictly positive. The utility function u’ 
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of agent i is assumed continuous and weakly monotonic on Yi.’ (As in 
section 2, we define ui first on C’ and then redefine on Y’.) 

We now describe the bidding distribution of agent i. Write H’=Zfj - {tii} 
and F’= R!f - {I%~>. The sets {Hi) are countable, and we enumerate these as 
{a;, &, . . .) ii,, . . >. Let fi($, $) be a continuous, strictly positive subdensity 
function on F’ for each r. In other words, for each i= 1,. . . , N, f’(Z’, ~2:) 
satisfies: 

L,j’(.,i:)d%‘>O foreach $ and c 1 f’(.,ii_:)dZ’=l. (3.1) 
(%EHL) F’ 

We also write H = nr= 1 H’, and note that H is countable. 
Thus, we describe an agent formally by its set Y’ of all net trades, its 

utility function ui, and its bidding distribution f’. Next, for dioisible goods, let 
us introduce the notion of a surplus reallocation function z:RMNdRMN as 

$$--(j’) with ~‘E&-N-’ ,gSh.X: i=l,...,N. (3.2) 

Observe that Ciy’=O, and that if each of the M components of cjXj is 
non-positive, then J’ZX’ for all i. 

Recall that a commodity vector x is partitioned as x=(X, i) according to 
the divisible and indivisible goods. Let 

xN):xieRMxZK, f xL=OM, fj $=o, . 

Recall [from (2.0)] that Y, is the 
YF = ni Yin Yc is compact. Let y l Y,. 

i=l L=l 

set of all feasible net trades. Then, 
Writing y = (y’, . . . , yi, . . . , yN), we define 

G’(y’) = {xi E Y’:u’(x’) 2 u’(y’)}, (3.3) 

G+‘(y’)= {xie Y’:u’(x’) >u’(y’)}, (3.4) 

‘xl, y’ E I” with x’h y’ implies u’(x’) 2 u’(y’). 
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G+(y)= fi G+‘(y’), 
i=l 

(3.5) 

YWpF = {y E Y,:$ z E Yr such that u’(z’) > u’(y’) for all i}. (3.6) 

In eq. (3.6) above, Y,,, denotes the weak Pareto frontier for the exchange 
economy. Points in this set will be referred to as ‘weakly Pareto optimal 
allocations’. For each 8~0, write 

Y, = {X E Y,: there is y E YWpF such that u’(xi) >u’(y’)-E for all i), (3.7) 

E= Y,\E. (3.8) 

Note that for each E >O, t is relatively open in Y, and E is compact. % is 
interpreted as the set of all feasible allocations which are E away from the 
Pareto frontier in utility terms for each agent. It is not difficult to show that 
Y -f-Lo WPF - t. Furthermore if y is not weakly Pareto optimal, then for 
some q > 0, y E Ye for all E < r]. The probability mass of the ‘upper contour set’ 
at y’ is 

P’(G’(y’)) = 1 s 1 G.~y&f’, i;)f’(?, i;) dx’. 
X:EW’ F’ 

(3.9) 

The conditional density at X’ =(:U’, a:) E Y’ given y’ E Y’ is defined as 

(3.10) 

It is easy to see that the function defined in (3.10) generates a probability 
measure on Y’ for every y’ E Y’. 

3.2. A modification of the bidding process: Surplus reallocation 

The surplus reallocation process also defines a stochastic process {B,) on 
the space of feasible allocations Y,. In what follows the essential moditica- 
tions are indicated. Agents begin at the initial state B,=O,,+,,, (zero net 
trade/initial endowments) and bid for a commodity vector according to the 
conditional distribution (i.e., the ith agent chooses b’=(&‘, 6*) according to 

f'($ M+K). If c, b’= 0, i.e., the net trades are feasible, then a reallocation of 
endowments takes place so that the agents’ new endowments are (b’+co’) and 
we write B, = (b’) where B, is the (random) state in period one. If O>c 6’ 
and 16’ =O, i.e. the total bid for divisible goods is less than zero and the 
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total bid for indivisible goods is equal to zero, then the surplus of divisible 
commodities is redistributed according to (3.2), i.e., B, =(#(&), 6’). Finally, if 
neither of the two cases above hold, then B, =B,, i.e. no ‘action’ takes place. 
In all the three cases, the process goes into the next round with B, in place 
of B,, and the story is repeated. Lemmas 3.1 to 3.3 are preliminary analytical 
results, whose statements may be found in the appendix. The primary lemma 
is Lemma 3.4, from which the main result follows easily. 

Lemma 3.4. Given E > 0 there is y > 0 such that: 

&)=Pr(&E t)B,_,=y)Z;, for all t, for all yEYF. 

In particular y is independent of y and t but depends upon E. 

Proof, See the appendix. 0 

We can restate the lemma as saying that there exists a function Y(E) such 
that 

inf p(y) Z:(E) >O for all E>O, 
YSYF 

where y is defined as above. Let U(.) be the utility image of either an 
allocation or a set of allocations depending upon the context. In particular 

u WPF is the image of the YWPF, U, = U(E), and {U,} = { U(B,)} is the utility 
image of the stochastic process of allocations. Since the SR process yields a 
sequence of allocations that is utility monotone for almost every sample 
path, the {U,} sequence is non-decreasing. Furthermore, since {U,) has as its 
range the image of a compact set under a continuous map, there is a limit 
random variable U* < cc a.s. such that {U,} converges to U*. 

Theorem 3.1. Pr(U*EUWPF)=l. 

Proof. Exactly as in H-R-R (Theorem 5.2). For completeness, a sketch is 
given. Fix E >O. From the lemma, Pr (U, E I!?,) 5 1 -Y(E). Using the Markov 
nature of the process, Pr (U,E 8,) Z(l -Y(E))’ so that Pr (U* E 0,) =O. Let 

4=U,,1 U~l,“,. Note that A’= Uwp,. We have Pr(U*EA)=O or 
Pr(U*EU,,,)=l. 0 

4. Some simulation results 

Section 4.1 discusses the performance of the B-process and the SR process 
in Scarf’s example, while section 4.2 summarizes findings from simulations of 
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economies with indivisible goods. The last section (4.3) studies the question 
of incentive compatibility in the context of a simple example. 

4. I. Scarf ‘s example 

There are three agents (i= 1,2,3) and three divisible goods (called x, y, z). 
The utility functions are given by u’(x, y, z) =min (x, y) u’(x, y, z) =min(y, z) 
and u3(x, y, z) = min (x, z). The initial endowments are w1 =( 1, 0, 0), 0’ = 
(0, 1, 0), o3 = (0, 0,l). Let Z(p) be the excess demand vector at prices p; we 
specify the tatonnement dynamics as given by dp/dt =Z(p(t)). There is a 
unique equilibrium price vector (up to a scalar multiple) at the prices 
p* =( 1, 1,1) which is globally unstable, in the sense that if the process starts 
at any disequilibrium price, it cycles forever without reaching p*. 

To define the Pareto frontier, we introduce a surplus function [. Given a 
feasible allocation (a’, a2, a3) (feasibility means 1 a’=( 1, 1, 1)) define [:R9+ 
R3 as 

~(a’,a’,a~)=[1-~u’-u~,1-uu’-u2,1-u~-~~]. (4.0) 

One can show that an allocation (a’, a’, a3) is weakly Pareto optimal if and 
only if at most one element of [(a’, u2, a3) is non-zero.’ 

In general, the Pareto frontier cannot be reached in finite time when there 
are divisible commodities. Consequently, we measure performance by fixing 
the total number of rounds at 1,000, and calculate the distance between the 
allocation attained by this point and the Pareto frontier. A natural measure 
of distance in this economy is given by the surplus function. We set p(a) to 
be the minimum of the three components of [(a) for any feasible allocation a, 
where c has been defined by eq. (4.0). Then, p(o) = 1, where w is the initial 
endowment, and p(x) = 0 for any weakly Pareto optimal allocation x. 

A B-process simulation for the Scarf economy,’ where the radius of the 
bid cube was 0.1, yielded allocations with p =O.Ol (sample average over 100 
realizations). Fig. 1, titled ‘B-process simulation of Scarf economy’ shows the 
surplus functions for a typical sample realization. 

The surplus reallocation process (Section 3.2) was also simulated for the 
Scarf economy (see footnote 9). One hundred sample paths were simulated, 
and the process moved to within p = 0.11 of the Pareto frontier on average 
within the first 1,000 bidding rounds. The surplus functions for a single 

‘This follows once we note that i(.)=[(s’-u’)+(x’-u3)+x2, (y’-u’)+(y’-u2)+y3, 
(z~-u~)+(z~-u~)+z’], where a’=(x’.y’,z’), i= 1,2,3. Now, x’gu’, x3zuu3, x220, so that the 
lirst component (and simdarly the others) is always non-negative. The claim follows from a 
careful case-by-case study using the above. 

‘The biddmg distributions used in the simulations are as follows: for each agent, it IS the 
product of independent exponential distributions, with parameter 1=4, one for each commodity. 
(An exponential distrlbutlon has density function given by llxlO,Ae’-“x’]. 
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Fig. 1. B-process simulation of Scarf economy (surplus functions for one sample path). 

Bid radius: 0.1 Total number of periods: 1,000. 

sample path are shown in fig. 2, titled ‘Surplus reallocation process for Scarf 

economy’. 
The graphs reveal that most of the improvement occurs within the first 50 

to 100 rounds. This is typical of most of the sample realizations, and suggests 
that the B-process or the SR process can be stopped after just a few periods 
and still realize most of the gains from trade. 

4.2. Economies with indivisible goods 

We consider economies with two goods and N agents each with a 
(common) utility function u(x,, x2) E min (x,, xJ. Even with this simplitica- 
tion, the dynamics of the B-process cannot be easily captured in qualitative 
terms. Simulation enables us to formulate conjectures on a scientific basis 
and to obtain counter-examples. Details of the computer programs are 
available in Bala (1988). Some related simulation results are given in Bala 

(1989). 
We assume that agents choose their bidding distributions from the family 

of Discrete Normal distributions {DN(p, o)> where ~20, CJ >O are parameters 
of the distribution. A random variable X is distributed as DN(,u, a) if 

Pr(X=k)=Pr(k<[N(p,a)I<k+l) for k=O,1,2,.... 
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Fig. 2. Surplus reallocation process for Scarf economy (surplus functions for one sample path). 

Number of periods: 1,000. 

Thus, this is a discrete analogue to the Normal distribution in which agents 
can independently control the ‘mean’ bid as its ‘spread’ by choosing 

appropriate values of p and CJ parameters. 
It transpires that the following modification increases the rate of conver- 

gence: if total bids are less than aggregate endowments in the economy, then 
the surplus is redistributed at random among the agents. By ‘random’ it is 
meant that, when there are N agents in the economy and a surplus of p 
items of good X, then the probability that agent i will get x items of the 
surplus is C(p, x)( l/N)“(l - l/N) p x lo It is easy to show that, for general - . 
exchange economies: 

Proposition 4.1. The modification of the B-process proposed above will not 
affect the Markov structure of the process. 

Proof. Omitted. 

We are interested in obtaining an idea of how the speed of convergence 
varies with the searching process used by the agents. To this end, we 
simulate an economy with four agents and two indivisible goods. Agents 1 

l”c(p, x) = p!/x!(p - x)! 
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Fig. 3. Convergence time by parameter choice (four identical agents). 

Agents have u(x, y) =min(x, y) and use DN(mu, sd) * DN(mu, sd) bid distributions. 

Replications: 20. Average standard error: 0.21 *(mean). 

and 3 each have endowments (0,lO) of the two goods, while agents 2 and 4 
have endowments (10,O) each. The (identical) bidding distribution of each 
agent is given of the product of independent DN(p, G) x DN(p, a) distribu- 
tions. Fig. 3, titled ‘Convergence time by parameter choice’ summarizes the 
exercise. As can be seen, high p and (T parameters are positively linked to the 
time taken to converge. Intuitively, a large p implies, on average, that bids 
ask for much more than the total endowment. As a consequence, such bids 
are rejected as infeasible, increasing the convergence time. As CJ rises, agents 
are experimenting more and more in their search for improving allocations, 
which perhaps makes it less likely that their bids will be compatible. 

Some other features of the simulation exercises are noteworthy. First, there 
can be long periods with no trades even though Pareto improving trades 
exist, because agents use inappropriate search parameters relative to the 
economic environment. For example, a two agent economy, with each agent 
using parameters p= 15, r~= 1, in an environment with total endowments 
(5,5) was simulated; the process was terminated after 99,999 rounds with no 
new trades. Second, the modification with ‘random reallocation’ can lead to 
substantial improvements in the speed of convergence. The intuition underly- 
ing this may be as follows: if agents are using ‘inappropriate’ search rules 
which underestimate the aggregate endowments, then there is a high 
probability that their bids will sum up to less than the total endowments. In 
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the unmodified process, this implies that bids are rejected for not exhausting 
the total endowment, thus pushing up the convergence time. By contrast, the 
modification, which provides some justification for the process presented in 
section 3 above, accepts such bids, improving the dynamic performance of 
the process in these environments. 

4.3. Incentive compatibi& 

The behavior assumption underlying the Walrasian model (each agent 
treating prices as given parameters) has been shown to be implausible (or 
incentive-incompatible) in the framework of ‘small’ economies [see, e.g., 
Hurwicz (1972, section 3)]. The B-process also faces difficulties in this 
direction. The next experiment throws light on this issue: each agent has an 
incentive to select an appropriate bidding distribution that will maximize the 
probability of the process getting absorbed into a Pareto optimal state most 
favorable to him (her). However, if both the agents pursue this objective, the 
expected time to converge to a Pareto optimal state tends to infinity. 

Example 4.1. As before, let there be two agents with consumption sets 
C’ = C’” = 2: and utility functions u’(.x;, xi) =min (x’;, xi) on Z:. Suppose 

that the total endowment in the economy is (2,2) with agent 1 having both 
units of the first good and agent 2 having both tlnits of the second. The 
Pareto frontier in the utility space is given by {(2,0), (1, l), (0,2)}. Assume 
that the bidding distribution on C’ factors out as the product of independent 
geometric distributions.l’ We shall assume that Pr{bid of (x1,x2)1(0,0)}= 
(1 -p)2p’;’ +x2 for agent 1 and correspondingly for agent 2 with a parameter q 
instead of p. From the theory of Markov chains [see Iosifescu (1980)] the 
expected time to absorption and the probability distribution over absorbing 
states can be calculated. The implication seems to be that there is a trade-off 
between individual greed (i.e. the relative position on the frontier) and the 
expected amount of time taken to reach the frontier. Figure 4, titled 
‘Probability of absorption’ depicts the probabilities of being absorbed into 
the Pareto optimal state (0,2) as a function of the agents’ parameter choices. 
From this graph it may be seen that agent 2 has an incentive to choose as 
high a parameter value q as possible, since this will maximize the probability 
of getting absorbed into the state most favorable to itself. The same 
argument applies to agent 1, for reasons of symmetry. However, as both 

“A random variable X has a geometric distribution with parameter p (denoted Ge(p)) if 
Pr(X=k)=(l-p)p’. for k=O, 1.2, The corresponding conditional distribution is 
Pr(X=klXzj)=(l-p)p’-’ for k>J. 
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agents increase their parameters, these cancel each other out [the pr~babj~~t~ 
of getting absorbed into the state (1,t) increases] and the expected absorp- 
tion time tends to infinity, as depicted in fig. 5, titled ‘Expected absorptian 
time’. 

~e~~if~~~ A.I. A M~rk~v chain {B,] defined on a state space I$.== 

(XT Y* z, . . .> with transitive matrix X(2/y) is tumpable with respect to a 
par~tj~~ {A,, , . . , Ah] of Y, if the lumped process is a Markav chain with 
transition matrix V, i.e. Pr(hr,EAki3t_1~t?j,B,_zEAnr,...frt/(kij) for every 
A, and Ak. 

Let PG++C,,,, X(zl y) For state ye A, in the; original chain. Theorem 
6.32 in Kemeny and Snelf [p. 124) s~rnar~~~s what we need know about 
lumpabil~ty 
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Fig. 5. Expected absorption time. 

Absorption from utility state (0,O) to Pareto frontier. 

The transition matrix for the lumped chain is then given by V(klj) -p(kl y) 
for some y E Aj. 

Note that we can choose YE Aj arbitrarily, as the assumption of lump- 
ability implies that p(kly) is independent of the actual YE A,. 

This result applies immediately to the B-process. If {B,} is the Markov 
chain in the set of feasible net trades Y, and {U(B,)} is the corresponding 
process in utility space, let {ui,. .., u,> be the set of utility states. This 

partitions YF as (U-1(~j)}1SJ6h which we denote as {Al,..., A,,). 
Let ygAj and zeAk. Of course, y= {y’}l”,i and z= (.zi}~=i. Now, if 

u’(y’) > aI for some i, then clearly p(k(y) =0 for every YE Aj. Otherwise, 

P@(Y)= c WlY), 
ZEAL 

which is the same for all YE Aj. The reason is as follows: if U(x) = U(y), 
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i.e. x, YE Aj, then P’(G’(x’)) =P’(G’(y’)) for each agent i, since the upper 

contour sets G’(x’) and G’(y’) are the same. Hence, the sequence {U(B,)} is 
also a Markov chain with the transition probabilities given by the lumped 

chain. q 

Starting from a point U= {ui}~=i in the utility space U(Y,), let S(u) be the 
set of all points u = {vi};= I in V( YF) satisfying ui 2 ui for all i. Clearly, u E S(U). 
Define the map Y,:S(U)-+~~‘“’ as follows: 

Y,(v) = S(u) for v E S(U). 

It is to be noted that the map is well defined, i.e. S(u)cS(u). In the language 
of graph theory, Y”(v) is the set of successors of u, including u as well. A path 
is an ordered subset {ui, . . . , u,} of S(u) such that u1 = u, U, = w, and for all 

1 sksr-1, uk+r E Y,(u,), I++~ fu,. The set of all paths from u to w is 
denoted O(u, w). The B-process beginning at u induces the map Y, with the 
following properties: 

(i) Y,(u) = {u} if and only if u is Pareto optimal. 
(ii) if u # w, then at least one of O(u, w) and O(w, u) is empty. 

Lemma 2.2. Let h be the cardinality of S(u). Then, there exists an ordering 

relation <a of S(u) denoted u1 <(I u2 co ... <a uh such that u1 =u, and the 

transition probability V(u,l u,) > 0 only if u, cII u, or u, = u,. Furthermore, ifg 
is the number of Pareto optimal states, then without loss of generality, the 

elements uh-g+ 1 to u,, can be taken to be the Pareto optimal states. 

Proof: Define S,(u) as the set containing the first k ordered elements of S(u), 
with S,(u)= (ui) = {u}. Let S;(u) be S(u)n[S,(u)]‘. This set consists of those 
elements which have not been ordered yet. We construct Sk + i(u) inductively 
from S,(u) as follows: S,+,(u)=Sk(u)u {u), h w ere v satisfies the following 
conditions: 

(a) UE&(U), i.e. it is chosen from the elements as yet unordered. 
(b) There does not exist WE&(U) different from v such that UE Y,(w). In 

words, v is not a successor to another as yet unordered element w. 
(c) If u and u’ satisfy the above conditions and only one (say v’) is Pareto 

optimal, then uk+ 1 = v. Otherwise, ties are broken arbitrarily. 

We need to show that a v exists. Suppose not. Then (b) must be false. Then, 
for every UE&(U) there exists WE&(U) such that ufw and UE Y,(w). Since 
S;(u) is a finite set, and every element has a predecessor other than itself, we 
can construct a cycle, i.e. property (ii) of Y, is violated. This contradiction 
shows that the construction is not vacuous. Condition (c) above ensures that 
in ordering, all the Pareto optimal states come at end. 17 
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Lemma 2.2 allows us to write down the transition matrix (starting from 
the state u) as an upper triangular matrix VU. Recall that h is the total 
number of states, g the number of Pareto states and n=h-g the number of 
non-Pareto optimal states. Also, 

We note that in light of the Lemma 2.2, the first row refers to the state U. 
Recall that each row of W has at least one strictly positive element. 

For the convergence result (Proposition 2.1), we need the following 
additional lemma: 

Lemma 2.3. Let C(n, r) denote the combinatorial product (see footnote IO). 
Then 

Ch I)= C C(n-s, r- 1). 
16s~n-r+l 

Furthermore, for all m, j 2 1, we have: 

C(j+m-l,m)= 1 C(k+m-&m-l). 
lskgj 

Proof See Feller (1950, vol. 1, 11.12). 

Proof of Proposition 2.1 

Recall that we have defined I, to be max;jnij, The sum of the first row of 
the iterates V: up to the nth column tell us the probability of remaining 
within the non-Pareto optimal set in the first t periods. Since each xii is 
bounded above by A,,, it can be shown by iteration that: 

x\j5C(j+t-22, t- l)& (A.1) 

where X\j is the transition probability from 1 to j in t periods. Note that for 
fixed j, the above combinatorial product, C(j + t - 2, t - 1) = (j + t - 2)!/ 
(t - l)!(j- l)! is a polynomial of degree j- 1 in t. The result (1) is formally 
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shown using induction. For t= 1, the coefficient is C(j- LO), which equals 1. 
Assume (1) holds for t = m. Writing rcy; ’ as: 

the last expression is dominated by A:+1 c1 sk5j C(k+m-2, m- l), and we 
employ Lemma 2.3 to continue the induction. Next, 

Pr(U,+ 1 is not Pareto optimal ( U, = u) = C 7tij 5 P,_ I(t)n: 
j<n 

with P, _ I(t) denoting a polynomial of degree n - 1 in t. Since t 2 1, P, _ I(t) is 
dominated by the function At”- ’ for some A> 0. If we can find C’, such that 
At”-lA:s CE(IZu+~)t then we are done. This simplifies to requiring: 

log A + (n - 1) log t - /?t 5 log C,, where B = log (1 + e/n,) 

and since the function on the left has a global maximum at t = (n - 1)/p, the 
proof of Proposition 2.1 is complete. 0 

We now take up the proofs of section 3. Before spelling out the proof of 
the main lemma. let us note: 

Lemma 3.1. Let a>O. If (a,) is a sequence of strictly positive reals, 

lim inf (l/a,) 2 l/a 
n 

if and only if lim sup” a, 5 a. 

Proof. Assume that lim sup” a,, S a. Given 6 > 0, we need to show that there 
exists N(6) such that 

n 1 N(6) * l/a, 2 l/a - 6. 

If 6 2 l/a then this is trivial. For 0 < 6 < l/a, choose a= 6aZ/( l -6a). By 
assumption, there exists N(E) such that 

nLN(E)=+a,Sa++. 

Substituting for E and rearranging, we get l/a, 2 l/a - 6 for n 2 N(E). 
The converse can be proved by similar means. 0 
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Lemma 3.2. Consider a finite collection (bb) of sequences of non-negative 
(i=l,2 ,..., N). Let b’, i=l,. . . , N be non-negative real numbers satisfying 

lim inf bk 2 b’, i=l,...,N. 

reals 

Then, 

liminf fi b;zfi b’. . 
n r=1 i=l 

Pro& If b’=O for some i, then the result is trivial. Assume therefore that 
b’ >O for all i. By assumption, for any 6 satisfying 0 < 6 < min, b’, there exists 
N( 6) such that if n 2 N(d) then bi 2 b’- 6 for all i. Hence, for n >= N(6), 

fi b;z fi (b’-fi)= fi b’-+(6), 
,=l i=l i=l 

where &6) is a polynomial in 6 satisfying +(S)-+O as 6+0. The result follows 
easily. 0 

Lemma 3.3. If (yb} -+y’ in Y’, and (J?; a’) E G”‘(y’), then 

lim inf f’((Y’; xi) lyi) 2 f’((9; x,) ( y’). (A.2) 
n 

Proof. For convenience, the ‘i’ superscripts will be omitted. Recall that 
f((Z;a)(y)=f((% I))/P(G(y)), where P(G(y)) is the probability mass in the 
upper contour set, i.e. 

P(G(y)) = 1 j l.,,,(X, .t)f(.f; .t) dx. 
xsHL F 

Now, using Lemma 3.1, the validity of (2) is equivalent to showing that 

lim sup P( G(y,)) 5 P( G(y)). 
n 

There are two cases to consider: (i) u(y,) zu(y) and (ii) u(y,) <u(y), for all 
n. In case (i) G(y,)c G(y) so that the inequality follows from the monotoni- 
city of the integral. In case (ii), G(y)= nn, i G(y,), where the sequence of sets 
can be taken to be decreasing. Then, from the continuity property of 
measures, we have limP(G(y,))=P(G(y)), and the result follows. 0 
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Proof of Lemma 3.4. Recall that p(y)=P(&~ ~IB,_,=y). If YE t then by 
monotonicity of preferences and the fact that agents bid in G’(y’) with 
probability 1, we get p(y) = 1. We can thus restrict attention to y E E. 

We begin by defining the set A as 

A=(x=(x’,..., xN)I~X’~O,~.-t’=O}n fj Y’. 
i= 1 

A is the set of all possible bids by agents which are globally feasible. Note 
that for divisible commodities, this includes bids that add up to less than the 
total endowments. We will then define {z’(.U);1’} on A to be the allocation 
obtained from XE A by redistributing the surplus (if any) of divisible goods. 

Suppose y E x. Here, y = (y’, . . . , yN) where y’ E Y’. Define 

A(.t;y)={x~Alfor all i,x’~G’~(y~),{z~(X);~~}E~). 

In words, A(k y) is the set of all bids that are: 

(1) Strongly individually rational (i.e. yielding strictly higher utility) given the 
current allocation y’ and a fixed vector of indivisible goods 1’ for each i. 

(2) Globally feasible given the total endowment. 
(3) After distributing the surplus of divisible goods, if any, the position in Y, 

is a-close to the frontier. 

It may be noted that A(1; y) will be empty for all but a finite number of i, 
since the total endowments of goods of indivisible goods is finite. For IE:H, 
let 

Fix 1 E H and denote by h(Z) the function inside the integral. Of course, 

5(M)=Jh(-)d- h x x w ere the argument y is suppressed. We show that ((it-; y) is 
lower semi-continuous on %. To this end, let y,+y in x. We have: 

(A.3) 

and denoting the inside term by g,(X), we use Fatou’s Lemma (the functions 
are non-negative) to obtain: 

lim inf ((c?; y,) = lim inf Jg. d% 2 J lim inf g, dx. 
” ” n 

(A.4) 



lim inf g,(X) 3 lim inf 1 ‘4(x; &, 4 fi f ‘W’; 4 (Y9 
n ” i=l 

I l.,,,,,(X; a) fi f’((2; a’) 1 y’) = II(%) (A.3 
i=l 
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Now, lim inf, g,(X) >= h(Z), which we prove below. To show that: 

we put 

L.,,;,“,(-% a) = a, and lAtxkyj(X; i) = a, 

and also 

ifiI f’((x’; ai) 1 Y:, = b, and fi f’((cP;z?)Iy’)=b, 
i=l 

for fixed i. Then, if we can show that liminf, a, 2 a, and lim inf, b, >= b, 
Lemma 3.2 tells us that liminf, a,,b,,2ab, which is what we require. To show 
that lim inf, a,2 a, i.e. that lim inf, lAcliy,j(X; i) 2 1.,.&X; i) we need only 
look at those x such that (X; a) l A(I;y). By the definition of A(., .), if the 
above does not hold, there is a subsequence {nk} such that for some agent i, 
we have 

u’(yk,) 2 u’(X’; a’) > u’(y’). 

Since yhk+yi, continuity yields a contradiction. Now, Lemma 3.3 shows 
that for each i, 

lim inf f’((%‘; ii) 1 yfJ 2 f’((f’; 2) ( y’). 

Applying Lemma 3.2, we get 

lim inf ,fir f’((Z’; ii) 1 yt) 1 ifiI f’(Z’; 9) ( y'). 
” 

Thus, we get lim inf b, 2 b, and we have proved 
By monotonicity of the integral we then obtain: 

i lim inf g,,(X) dz? 2 j h(l) dx = ((a; y). 
n 

(A4 

(AS), i.e. that lim inf, g, 2 h. 

Combining this with (A.4) above, we get lim inf,, 5($ y.) &5(_%; y). 
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Now, deline b(y) as b(y) =xtcH 5(_%; y). 
Since the total endowments of indivisible goods is finite, the sum on the 

right-hand side of the above expression is actually the sum of a finite number 
of {(.) functions. Consequently, ii(.) is also lower semi-continuous and as x 
is compact, fi(.) attains its minimum at some y* E x. We show now that 
fi(y*) > 0. This may be done as follows: 

Choose a point x* E Y,,, n G’(y*). Of course x*=(x’*, . . ., x”*). As usual 
X’* is the vector of divisible goods associated with x* for agent i, with 
corresponding vector of indivisible goods being J?*. A small problem may 
arise because X’* may be on the boundary of the trading set of agent i. Given 
that the aggregate endowment of every good is strictly positive, it is clear 
that for every divisible good k, there must be some agent j for whom z@ 
(this denotes the net trade of the kth good by agent j) is greater than -u.$. 
We use continuity to pick (X0; a*) in tnG+(y*) such that for each agent i, 

2” is in the interior of its set F’. Now, since E’z {h’]u’(y’*) <u’((h’; ii*)) < 
u(X”; a‘*)} is an open set in F’ for all i, choose an open ball N(P)c E’ 
centered at a point @EF~ and satisfying 

(a) Xi E N(F) implies Xi < Xi0 (component-wise). 
(b) X’ E N(f’) implies ~‘((2’; a’*)) > ui(xi*) -6. 

Since X0’ is in the interior of F’, the above are possible due to continuity of 
the utility functions. 

Now we note, using monotonicity, that if agents pick bids X’ in N(r’) along 
with _-?‘* for each i, then there will be a surplus in each good, which after 
reallocation will lead to a position in YE. In other words, 

w = fi pv(t-q x (a*i>] c A(i*; y*). 
i=l 

But, since N(t’) is, for each i, an open set in projF, G+‘(y*‘) they are bid with 
strictly positive probability so that ii 2 Pr ( W) > 0. 

It is not difficult to see that p(.) 2?c(.) since the latter function is calculated 
assuming that agents bid in their strict upper contour sets whereas they 
actually bid in the weak upper contour sets. 

This proves the result, since d is strictly positive at its minimum 
value. 0 
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